

Automatic Online Fake News Identification by Stance Detection

A Thesis Submitted

In Fulfillment of the Requirements for the

Degree of Bachelor of Science in Computer Science and Engineering

Md. Alkemy Hossain

ID: 16103248

Md. Sarwar Jahan Shuvo

ID: 16103254

to the

Department of Computer Science and Engineering

College of Engineering and Technology (CEAT)

IUBAT-International University of Business Agriculture and Technology

August, 2019

i

CERTIFICATION

This thesis paper titled “Automatic Online Fake News Identification by Stance

Detection” submitted by the group as mentioned below has been accepted as

satisfactory in partial fulfillment of the requirement for the degree of Bachelor of

Science in Computer Science and Engineering in 26th August 2019.

Group Members:

Md. Alkemy Hossain

 Md. Sarwar Jahan Shuvo

Supervisor:

Nusrath Tabassum

Lecturer

Department of Computer Science and Engineering

International University of Business Agriculture and Technology

ii

CANDIDATES’ DECLARATION

This is to certify that the work presented in this thesis paper, titled, “Automatic Online

Fake News Identification by Stance Detection”, is the outcome of the investigation

and research carried out by the following students under the supervision of Nusrath

Tabassum, Lecturer, Department of Computer Science and Engineering, International

University of Business Agriculture and Technology.

Md. Alkemy Hossain

ID: 16103248

Md. Sarwar Jahan Shuvo

ID: 16103254

iii

ACKNOWLEDGEMENT

At first, we would like to thank Almighty for His blessing. Without His concern nothing

can not be possible.

We would like to express our heartiest gratitude to our honorable supervisor, Nusrath

Tabassum, Lecturer, Department of Computer Science and Engineering, International

University of Business Agriculture and Technology, for his guidance, encouragement,

motivation and support to prepare this thesis paper by spending his valuable time to

review and evaluate this paper.

We are very grateful to the Department of Computer Science and Engineering (CSE)

of IUBAT—International University of Business Agriculture and Technology for

providing their all-out support during the thesis work. Specially we would like to thank

to our Chair Prof Dr. Md. Abdul Haque, Department of Computer Science and

Engineering and also Coordination Dr. Utpal Kanti das, Department of Computer

Science and Engineering.

Finally, we express our gratitude to our parents and classmates for always being

motivating and supportive.

Dhaka

August, 2019

Md. Alkemy Hossain

Md. Sarwar Jahan Shuvo

iv

ABSTRACT

The large use of social media has tremendous impact on our society, culture, business

with potentially positive and negative effects. Now-a-days, due to the increase in use

of online social networks, the fake news for various commercial and political purposes

has been emerging in large numbers and widely spread in the online world. The

proliferation and rapid diffusion of fake news on the Internet highlight the need of

automatic fake news detection systems. In the context of social networks, machine

learning (ML) methods can be used for this purpose. Fake news detection strategies are

traditionally either based on content analysis (i.e. analyzing the content of the news) or

- more recently - on social context models, such as mapping the news’ diffusion pattern.

The proliferation of misleading information in everyday access media outlets such as

social media feeds, news blogs, and online newspapers have made it challenging to

identify trustworthy news sources, thus increasing the need for computational tools able

to provide insights into the reliability of online content. In this paper, we focus on the

automatic identification of fake content in online news. First, we introduce datasets for

the task of fake news detection. We describe the collection, annotation, and validation

process and present several exploratory analyses on the identification of linguistic

differences in fake and authorized news content. Second, we conduct a set of learning

experiments to build accurate fake news detectors. In addition, we provide comparative

analyses of the automatic identification of fake news. We are building a classifier that

can predict whether a piece of news is fake based on data sources, thereby approaching

the problem from a purely NLP perspective. Our goal is to develop a reliable model

that classifies a given news article as either fake or true.

v

Table of Contents
1. Introduction ... 2

1.1 Fake news and stance detection ... 2

1.2 Natural Language Processing (NLP) ... 3

1.3 Machine Learning ... 3

1.4 Motivation .. 4

1.5 Objective ... 4

1.6 Contributions of the Work .. 4

1.7 Naive Bayes.. 4

1.8 Support Vector Machine (SVM) ... 5

1.9 Logistic Regression .. 5

1.10 Neural Network .. 5

1.11 Datasets .. 5

1.12 Content-based method .. 6

1.13 Combining social and content signals ... 7

1.14 Fake News Datasets .. 7

1.15 Organization of the Thesis ... 8

2 Literature Review .. 10

2.1 Fake News Identification ... 10

2.2. Towards Automatic identification of Fake News ... 11

2.3 Fake review detection in yelp ... 13

2.4 Stance Detection For Fake News Identification ... 14

3. Methodology ... 18

3.2 Building a Web Dataset ... 19

3.3 Model description .. 21

3.4 Tools .. 23

3.5 Interface .. 24

3.6 Program pipeline .. 25

3.7 Bag of Words.. 25

3.8 Parsing input and fetching articles... 26

3.9 Source Reputability Database ... 26

4 Result .. 29

4.1.1 Effect of Feature Extraction on Performance .. 29

4.2 Discussion .. 30

4.2.1 Model Performance on Each Category .. 30

vi

4.2.2 Performance of model combination ... 32

5. Conclusion and Future Work ... 34

5.1 Conclusion ... 35

5.2 Future Improvement .. 35

References ... 36

Appendix... 37

vii

List of Figures

Figure 1 Methodology ... 18

Figure 2: Project UI ... 24

Figure 3: Output in Terminal ... 24

Figure 4: Performance improvement after adding the features 29

Figure 5: Comparison of test set score generated from different models 33

viii

List of Tables

Table 1: Test set labels output ... 31

Table 2: Accuracy rate of each stance for all models.. 32

1

Chapter 1

 Introduction

2

1. Introduction

With the advent of technology, information is free for everyone. This is an advancement

in human history, but at the same time it blurs the line between true media and

maliciously fabricated generated media. A freely available tool to verify the

trustworthiness of a news is needed to filter the information we receive every day. With

the advent of fake news being used to influence many things, the identification of false

information has become an important task. Governments, newspapers and social media

platforms are working hard on distinguishing credible news from fake news. The goal

of the Fake News Challenge is to automate the process of identifying fake news by

using machine learning and natural language processing. This process can be broken

down into several stages. Recent development of machine learning provides a possible

solution to automate this process. However, accurately and repeatedly identifying fake

news is still proven difficult due to the complex nature of human language. With the

popularity of online media and detrimental effect of fake news on many aspects of our

society, developing a reliable machine learning model for fake news identification

becomes very important.

1.1 Fake news and stance detection

Stance is one of the most important indications of news authenticity. In this project, we

have studied the stance of the news article headlines on their body texts by predicting

the relevance between the headlines and body texts, and if relevant, further identifying

the opinion of the title on its body. This is an important part of fake news identification

process. A first helpful step towards the identification of fake news is to understand

what other news sources are saying about the same topic. That is why the fake news

challenge initially focuses on stance detection. Stance detection comprises the

estimation of the relative perspectives of two different text pieces on the same topic as

described by. Specifically, the task is to estimate the stance of a news headline, relative

to the contents of a news article which can but does not have to address the same topic.

Thus, the relative stance of each headline-article pair must be classified as either

unrelated, discuss, agree or disagree. The discovery of a disagreeing headline-article

pair does not necessarily correspond to the discovery of a fake article, but it is an

automated first step which could make human reviewers aware of a discrepancy.

3

Human reviewers or specialized algorithms can then ultimately decide which articles

are fake.

1.2 Natural Language Processing (NLP)

Natural language processing (NLP) is a field of computer science, artificial intelligence,

and computational linguistics concerned with the interactions between computers and

human (natural) languages. As such, NLP is related to the area of human–computer

interaction. Many challenges in NLP involve: natural language understanding, enabling

computers to derive meaning from human or natural language input; and others involve

natural language generation. Natural language processing (NLP) plays an important

role as a communication medium. It is an empirical field of work for any language. To

build a program that understands spoken language, we need all facilities of a written

language understand as well as enough additional knowledge to handle all kinds of

ambiguities. Natural language processing includes understanding and generation, as

well as other tasks.

1.3 Machine Learning

Machine learning is an application of artificial intelligence (AI) that provides systems

the ability to automatically learn and improve from experience without being explicitly

programmed. Machine learning focuses on the development of computer programs that

can access data and use it learn for themselves.

The process of learning begins with observations or data, such as examples, direct

experience, or instruction, in order to look for patterns in data and make better decisions

in the future based on the examples that we provide. The primary aim is to allow the

computers learn automatically without human intervention or assistance and adjust

actions accordingly.

4

1.4 Motivation

Our goal was to attempt to tackle the growing issue of fake news, which has been

exacerbated by the wide-spread use of social media. For example, many believe fake

news on social media to be a large contributing factor to results. We wanted to create

an easy-to-use system to detect the credibility of a user’s claim or article. For this

reason, we are intended to work on Automatic Online Fake News Identification.

1.5 Objective

Now a days so many news are generated. Among all the news it is very tough to identify

which one is real and which one is fake. Now it has become a challenge. So we are

conducted a research on ‘Automatic Online Fake News Identification by Stance

Detection’ that can help people to identify real news and stop spreading rumors. As a

result, automating fake news detection is essential to maintain robust online media and

social network.

1.5 Contributions of the Work

Now a day’s so many news is generated. Among all the news it is very tough to identify

which one is real and which one is fake. The main prospects of our proposed system are listed

below
 To remove people confusion by reading fake news.

 To stop rumor spreading by fake news.

 To stop getting wrong information by reading fake news.

1.6 Naive Bayes

Using our Naive Bayes algorithm, we identified the top-k tokens that were found to be

the most indicative on the classification of the example. This was computed by finding

the k/2 tokens which have the highest posterior probability of being in fake news, and

the k/2 tokens with the lowest posterior probability of being in fake news. The following

expression was used to rank the tokens by Their indication of fake news: Token Rank=

exp(φj|y=1)/exp(φj|y=0)

The k/2 most indicative tokens for each class was used to form a new feature space for

our Logistic Regression model. These tokens were also examined heuristically to

5

ensure they pass the eye-test given our team’s knowledge of contemporaneous fake

news.

1.7 Support Vector Machine (SVM)

Due to its robustness, a support vector machine (SVM) was used as the second

algorithm in our Average-Hypothesis model. The SVM algorithm used uses a hinge

loss that seeks to maximize the margin between the two classes of data. The SVM

algorithm uses a second-order Gauss kernel that operates on the full 5078 token feature

space.

1.8 Logistic Regression

Due to its simplicity and elegance, Logistic Regression (LR) was used as the third

algorithm within the Average Hypothesis model. The LR model uses gradient descent

to converge onto the optimal set of weights (θ) for the training set. Where J is the loss

function and alpha are the learning rate. For our model, the hypothesis used is the

sigmoid function.

1.9 Neural Network

A one-layered neural network model was used on the 80 tokens identified to be most

causal to a source’s classification. The hidden layer neurons use sigmoid activation

function and, the output layer uses the SoftMax activation. Also, ReLU and tanh

function were tested for the activation function of the hidden layer. Although the results

from sigmoid are not good enough to be used as compared to other models discussed

above, it was better than ReLU and tanh activation function.

1.10 Datasets

They validated their approach using three different datasets. The first one is the same

used in: this allows to easily compare the accuracy of our method with the accuracy of

6

a purely social-based method. The dataset consists of the public posts and posts’ likes

of a list of Facebook pages (selection based on) belonging in two categories: scientific

news sources vs. conspiracy news sources. The resulting dataset is composed of 15,500

posts, coming from 32 pages (14 conspiracy pages, 18 scientific pages), with more than

2,300,00 likes by 900,000+ users. 8,923 (57.6%) posts are hoaxes and 6,577 (42.4%)

are non-hoaxes. Additional details about the dataset are provided by. The second and

third datasets come from the Fake Newsnet dataset, recently published by ; They used

both the PolitiFact and BuzzFeed news sets they provide: the former contains a ground

truth of 240 news (half labeled as fake, half labeled as real by the well-recognized fact-

checking website PolitiFact – http://www.politifact.com/subjects/), the latter a ground

truth of 182 news (half labeled as fake, half labeled as real by expert opinion of

journalists from BuzzFeed – https://www.buzzfeed.com). Both datasets provide, for

each news, the text content of the news and the anonymized IDs of the users who

posted/spread the news on Twitter (among other information).

1.11 Content-based method

For the Facebook Data dataset, they produced, for each Facebook post, a text corpus

joining the actual text content of the post (retrieved using the Facebook Graph APIs –

https://developers.facebook.com/docs/graph-api) and, if the post shared a link, the title

and text preview of the link (as provided by the Facebook Graph APIs) together with

the actual content of the shared webpage. To retrieve the content of a webpage, they

applied some simple heuristics: they removed the CSS and JavaScript content from the

page, then we extracted the text contained in the remaining HTML tags and, in order to

discard useless content (such as menu items), we kept only the lines having more than

n words. In this work, we fixed n = 7. Each word of the corpus has then been stemmed

and each post has been represented as a vector of TF-IDF frequencies on the stem’s

vocabulary. Note that we used Python snow ball stemmer

(https://pypi.python.org/pypi/snowballstemmer), setting the language to Italian since

all the text content of the pages was in Italian Finally, they performed the post

classification using a logistic regression model. As for the PolitiFact Data and

BuzzFeed Data datasets the content was already available, they used only the text value

as provided in and they applied the same classification method, only changing the

https://pypi.python/

7

stemmer, since the text content of all the news was in English. They used the Porter

Stemmer (available at http://www.nltk.org/) in this case.

1.12 Combining social and content signals

There intuition, as discussed in the Introduction, is that social based methods – and in

particular the Boolean crowdsourcing algorithms presented in – work extremely well

(even with very limited training sets) when they have to classify a post whose number

of social interactions is above a certain threshold, while their performance might get

worse when only little information about social interactions is available. In these cases,

content-based methods can complement them. They therefore defined a threshold λ and

classified the posts combining content-based and social-based approaches. In

particular, we combined each of the two social-based methods proposed in with the

content-based method introduced in the previous section using a simple rule: likes < λ

: use the content-based classifier likes ≥ λ : use the social-based classifier Where likes

is the number of users who like a post or, more generally, the number of social

interactions collected by the post. The model is intentionally simple, yet it captures the

different contributions of the two (alternative) approaches, it guarantees a simple

implementation and, as we will show in the results section, its accuracy is higher than

the one provided by more sophisticated models. They then evaluated the performances

of the combined method using accuracy (the same metric used in) plus some additional

metrics that make easier the comparison with other methods in the literature: F1 score,

precision, recall. They also carried out a sensitivity analysis to study how the accuracy

of our classifier is affected by changes in the threshold λ.

1.13 Fake News Datasets

As highlighted earlier, the datasets used in previous work have either relied on satirical

news (e.g., “The Onion”), which also have confounded such as humor or irony; or used

fact-checking websites (e.g., “7olitiFact” or “Snopes”), which are typically focused on

only one domain (generally politics). They thus decided to construct two new datasets

of fake news that cover several news domains and specifically model the deceptive

property of fake news without major confounds. One dataset is collected via

8

crowdsourcing and covers six news domains; the second dataset is obtained directly

from the web, and covers celebrity fake news. Guidelines for a Fake News Corpus. In

building a fake news dataset, they adhered to the nine requirements of a fake news

corpus proposed by (Rubin et al., 2016). Specifically, the authors suggested that such a

corpus should (1) include both fake and real news items, (2) contain text-only news

items, (3) have a verifiable ground-truth, (4) be homogeneous in length and (5) writing

style, (6) contain news from a predefined time frame, (7) be delivered in the same

manner and for the same purpose (e.g. humor, breaking news) for fake and real cases,

(8) be made publicly available, and (9) should take language and cultural differences

into account. In our work, to the extent possible, they aimed to address all of the above

guidelines. As outlined in the following, the ground-truth remains challenging since

they cannot verify with absolute certainty whether all the content of real news items is

in fact true.

1.14 Organization of the Thesis

This thesis is divided into five chapters. This chapter briefly discussed a general

overview of topic related to this thesis. In addition, the motivation, objectives and some

basic term related to this thesis are presented. In the next chapter 2, an overview of our

project related terminologies related to the project and contains brief discussion on

previous works that is already implemented with their limitations. Chapter 3 describes

elaborately the working procedure of our proposed system with appropriate figure and

tables. We also explain authorship detection mechanism with appropriate iteration and

figure. In Chapter 4, we have illustrated our implementation of the project and explain

the implementation step by step. The graphical representation, abstract view of the

system is explained here with necessary figures. In this chapter we also specify the

system requirements of the proposed model. Chapter 6. This thesis contains one

appendix intended for persons who wish to explore certain topics in greater depth.

Appendix A contains the source code of the full project with comments which will be

helpful.

9

Chapter 2

Literature Review

10

2 Literature Review

2.1 Fake News Identification

Their goal is to develop a reliable model that classifies a given news article as either

fake or true. Their model is designed to emulate the functionality of the BS Detector, a

popular extension for Chrome that automatically flags articles, websites and content as

BS. Their accuracy percentage is 83%.

They used python, Machine Learning and numerous binary algorithm. They use Python

and MATLAB to create models.

First they convert their words into numbers using NLP (python) and got dataset then

they pre -processed and clean those dataset using Naive Bayes, SVM & logistic

regression. They used a 1 layer deep neural network, and 2 layer deep neural network

for fake news identification.

Related Work

 Text Processing: Tokenization to contextual clustering with time.

 Machine Learning Tools : Classification algorithms

Dataset and Features

They took data from website called kaggle.com with the help of BS detector .They have

a total of 12,165 samples which we distributed to train.

 Tokenize the body and headline with the Punkt statement tokenizer from the

NLTK NLP library.

 Tokenize words with our algorithm, and take care of lemmatization.

 Tag each sample with the tokens obtained from entire headline set, and body

set.

We kept only the tokens that had a frequency more than 10 over the entire title dataset,

and for body, we kept only the tokens that had a frequency of more than 200 over the

entire dataset. This leaves us with a total of 5261 tokens.

https://www.kaggle.com/

11

We used Naive Bayes to obtain the tokens with high posterior probability, which we

then used for deep learning and logistic regression.

Methods

 Average-Hypothesis model (naive bayes with laplace smoothing, SVM, logistic

regression)

 Neural Network

Results

Accuracy of 73%

2.2. Towards Automatic identification of Fake News

First they have used SVM (support vector machine) to TF-IDF features to discern

whether a headline-article pairing is related or unrelated. Then they employ various

neural network architectures on top of LSTMs(Long-Short-Term-Memory Models) to

determine agree, disagree, or discuss. They scored .8658 according to FNC-1(fake news

challenge 1) performance metric.

Provided dataset:

Stance Description % of Provided

Data

Agree

Disagree

Discuss

Unrelated

article agrees with headline

article disagrees with headline

article discusses same topic as headline (no

position)

article unrelated to headline

7.36

1.68

17.83

73.13

 In this paper they suggested two part solution. First suggest a linear classifier to

classify headline-article pairs as related or unrelated. Second, we suggest several

12

neural network architectures built upon Recurrent Neural Network Models (RNNs) to

classify related pairings as agree, disagree, or discuss.

FNC-1 Dataset & Scoring Metrics: The dataset consists of 1648 distinct headlines,

1683 distinct articles, and 49972 distinct headline-article pairings. The headlines had

various lengths ranging from 10 to 220 words, while articles had lengths ranging from

25 to 5000 words. Metrics to performance on the task is:

S1=Acc Related,unrelated

S2= Acc Agree, disagree, discuss

SFNG= .25S1+.75S2

Baseline modes:

Baseline Model SF NC

Lexicalized Classifier

BOW MLP

LSTM with Concatenated Input

.7860

.7787

.4005

Methods:

 Split into Two Classification Problems

 Subproblem 1: Related vs Unrelated via Linear Classifier

 LSTM Attention Architectures

o Conditionally Encoded (CE) LSTMs

o Adding Global Attention

o Adding Word-by-Word Attention

o Bidirectional Global Attention

o Bidirectional Conditional LSTM with Bidirectional Global Attention

o Bilateral Matching with Multiple Perspectives

o Attention Layers for Bilateral Multi-Perspective Matching Model

Results:

 Accuracy level is high and it is 0.97 out of 1.

13

2.3 Fake review detection in yelp

Datasets

The dataset is collected from Yelp.com and firstly used by Rayana and Akoglu and it

includes product and user information, timestamp, ratings, and a plaintext review. In

their project, they randomly choose equal-sized fake and non-fake reviews from the

dataset. They used a total of 16282 reviews and split it into 0.7 training set, 0.2 dev set,

and 0.1 test set.

Features

They extract two types of features: review-centric features and reviewer-centric

features.

 Review-centric features:

1. Structural features : length of the review, average word length, number of sentences,

average sentence length, percentage of numerals, percentage of capitalized words.

2. POS percentages

3. Semantic features: We calculate the percentages of positive and negative opinion-

bearing words in each review.

4. Unigram features: We extract 100 unigram features from the reviews. More about

feature selection in later parts.

5. Bigram features: We extract 100 bigram features.

Reviewer-centric features

1. Maximum number of reviews in a day

2. Percentage of reviews with positive / negative ratings

3. Average review length

4. Standard deviation of ratings of the reviewer’s reviews

14

Their average hypothesis model combines the hypotheses obtained from Nave Bayes,

Logistic Regression and SVM by averaging the output probabilities obtained from each

model. The aim of averaging is to obtain a model that is less susceptible to over-fitting

compared to a model that only uses one of the constituent methods. Given our large

feature set consisting of 5,078 features, certain judgment calls were used and validated

to integrate this model. Within the Average-Hypothesis model, the Nave Bayes

algorithm (which includes Laplace smoothing) and SVM algorithm was run using all

5,078 tokens, while Logistic Regression was performed using only the 20 tokens that

were determined to be most indicative to a sample’s classification. The following

sections delineates the theory used in our implementations of these three learning

algorithms.

2.4 Stance Detection For Fake News Identification

The goal of this project is to identify whether given headline-article pairs: agree,

disagree, discuss the same topic, or are not related at all, as described in. Our method

feeds the headline-article pairs into a bidirectional LSTM which first analyzes the

article and then uses the acquired article representation to analyze the headline. On top

of the output of the conditioned bidirectional LSTM, we concatenate global statistical

features extracted from the headline-article pairs. We report a 9.7% improvement in the

Fake News Challenge evaluation metric and a 22.7% improvement in mean F1

compared to the highest scoring baseline.

Stance detection datasets

The dataset consists of about 50,000 headline-article pairs each labeled with either

unrelated, discuss, agree or disagree. 49,972 pairs among them 73.13% are unrelated,

17.83% Discuss, 7.36% agree, and 1.68% Disagree.

15

Methods:

 Long short term memory (LSTMS)

 Bag of Words

 Convolutional neural networks for n-grams

 Attention mechanisms

 Two-step classification

Collecting Legitimate News. They started by collecting a dataset of legitimate news

belonging to six different domains (sports, business, entertainment, politics,

technology, and education). The news was obtained from a variety of mainstream news

websites (predominantly in the US) such as the ABC News, CNN, USA Today, New

York Times, Fox News, Bloomberg, and CNET among others. To ensure the veracity

of the news, they conducted manual fact-checking on the news content, which included

verifying the news source and cross-referencing information among several sources.

Using this approach, they collected 40 news in each of the six domains, for a total of

240 legitimate news. Collecting Fake News using Crowdsourcing. To generate fake

versions of the news in the legitimate news dataset, they make use of crowdsourcing

via Amazon Mechanical Turk, which has been successfully used in the past for

collecting deception data on several domains, including opinion reviews (Ott et al.,

2011b), and controversial topics such as abortion and death penalty (P´erez-Rosas and

Mihalcea, 2015). However, collecting deceptive data via AMT poses additional

challenges on the news domain. First, the reporting language used by journalists might

differ from AMT workers language (e.g., journalistic vs. informal style). Second,

journalistic articles are usually lengthier than consumer reviews and opinions, thus

increasing the difficulty of the task for AMT workers as they would be required to read

a full news article and create a fake version from it. To address the former, they asked

the workers to the extent possible to emulate a journalistic style in their writing. This

decision was motivated by the 5th point of the fake news corpus guidelines described

in section 3, which suggests obtaining news with homogeneous writing style. To

address the latter, they opted to working with smaller information units. Their approach

consists of manually selecting a news excerpt that briefly describes the news article.

Thus, from the legitimate news dataset collected earlier, they manually extracted 240

16

news excerpts. The final dataset consists of 33,378 words. Each news excerpt has on

average 139 words and approximately 5 sentences.

They set up an AMT task that asked workers to generate a fake version of the provided

news. Each hit included the legitimate news headline and its corresponding body. They

instructed workers to produce both a fake headline and a fake news body within the

same topic and length as the original news. Workers were also requested to avoid

unrealistic content and to keep the names mentioned in the news. The fake news was

produced by unique authors, as they allowed only a single submission per worker. They

restricted the submission to workers located in the US as they might be more familiar

with news published in the US media. In addition, they restricted participation to

workers who maintained an approval rate of at least 95% to reduce potential spam

contributions. It took approximately five days to collect 240 fake news. Each hit was

manually checked for spam and to make sure workers followed the provided guidelines.

In general, they received few spam responses and most of the workers followed

instructions satisfactorily; the only exceptions were a few cases where they provided

only the headline or included unrealistic content. Interestingly, they observed that AMT

workers succeeded in mimicking the reporting style from the original news, which may

be partly explained by typical verbal mirroring behaviors with drive individuals to

produce utterances that match the grammatical structure of sentences they have recently

read (Ireland and Pennebaker, 2010). This partially addresses our initial concern of

authors reporting style being a source of noise while analyzing news generated by

journalists and AMT workers. The final set of fake news consists of 31,990 words. Each

fake news has on average 132 words and approximately 5 sentences. Table 1 shows a

sample fake news, along with its legitimate version, in the technology domain.

Throughout the rest of the paper, we refer to this crowdsourced dataset as FakeNews

AMT.

17

Chapter 3

Methodology

18

3. Methodology

There are many ways one could attempt to detect fake or biased news on the internet.

However, we feel our implementation based on stance detection offers the greatest

flexibility and reliability without having to get into the weeds of labeling individual

claims as true or false. Rather we aim for a more general approach classifying articles

from unknown sources as generally agreeing or generally disagreeing with sources of

known (high and low) credibility. Moreover, our implementation is particularly

compelling because we can accept user input as either a link to an article OR as any

arbitrary claim to be fact checked like (Obama is not a US citizen). In this way our

program acts as a fact-finding search engine and returns links to relevant articles along

with the article’s stance (agree/disagree/is-neutral) on that topic! Our program offers

tremendous research and discovery potential to users as well as simply checking claims.

We wanted to create an easy-to-use system to detect the credibility of a user’s claim or

article, based on the concept of stance detection. Fake news is tough to identify. Many

‘facts’ are highly complex and difficult to check, or exist on a ‘continuum of truth’ or

are compound sentences with fact and fiction overlapping. The best way to attack this

problem is not through fact checking, but by comparing how reputable sources feel

about a claim.

Figure 1 Methodology

19

We created and implemented a machine learning model in Tensorflow that’s based off

of several research papers in the field of stance detection. Our model uses a combination

of Bag-of-Words, Google’s word-2-vec, TF, TF-IDF (Term Frequency, Inverse

Document Frequency), and ‘stopwords’ inside Scikit-learn to vectorize our input. That

is run through a single hidden layer with ReLU activation, a fully connected layer and

a softmax activation function to produce one of 4 outputs. We are comparing an

arbitrary body of text to an arbitrary claim. So our ML outputs whether or not our body

of text is ‘related’ or ‘unrelated’ to the claim. If it’s related, then it outputs if the body

‘agrees’, ‘disagrees’ or ‘is neutral towards’ our claim. Our model achieved 82%

accuracy on our test data (for pure stance detection. Not necessarily ‘fake news’

detection).

One challenge we faced was the relatively long running time of our program. Focusing

in on the machine learning, initializing our model took roughly 10 seconds on a recent

laptop. To help mitigate wait time, we began loading our model as soon as a visitor

entered the site. Therefore, it was usually available before the user even submitted a

search request. Once the articles were retrieved, the model only took about 5 seconds

to compare our typical thousands of articles to the user’s claim before returning the

results. These results, how the user’s claim compared (agree/disagree) to our reference

articles were then passed into our source reputability engine to compute a final score:

fake news or not. All subsequent searches from the same user would be conducted on

the same session of that model, so no further computation or wait time is required.

3.2 Building a Web Dataset

They collected a second dataset of fake news from web sources following similar

guidelines as in the previous dataset. However, this time, they aimed to identify fake

content that naturally occurs on the web. They opted for collecting news from public

figures as they are frequently targeted by rumors, hoaxes, and fake reports. They

focused mainly on celebrities (actors, singers, socialites, and politicians) and their

sources include online magazines such as Entertainment Weekly, People Magazine,

Radar Online, among other tabloid and entertainment-oriented publications. The data

were collected in pairs, with one article being legitimate and the other fake. In order to

determine if a given celebrity news was legitimate or not, the claims made in the article

20

were evaluated using gossip-checking sites such as ”GossipCop.com”, and were cross-

referenced with information from other sources. During the initial stages of the data

collection, they noticed that celebrity news tends to center on sensational topics that

sources believe readers want to read about, such as divorces, pregnancies, and fights.

Consequently, celebrity news tends to follow certain celebrities more than others

further leading to an inherent lack in topic diversity in celebrity news. To address this

issue, they evaluated several sources to make sure we obtain a diversified pool of

celebrities and topics. Upon beginning the data collection procedure using these

guidelines, another characteristic surfaced: several pairs contained nearly the same

information with similar lexicon and reporting style, with differences being as simple

as just negating the false news. For example, the following headlines correspond to a

news pair where the legitimate version only negates the fake version: “Aniston gets into

fight with husband” (fake) and “Aniston did NOT get into fight with husband”

(legitimate). To address this issue, they sought to identify related news that still

followed the fake-legitimate pair property while being sufficiently diverse in lexicon

and tone. In the former example, the fake news was paired with an article titled “Aniston

and Husband enjoy dinner” that was published on the date of the alleged fight. Using

this approach, they collected 100 fake news articles and 100 legitimate news articles in

the celebrity domain. The final fake news set has an average of 399 words and 17

sentences per article, for a total of 39,940 words. The corresponding legitimate news

set has an average of 709 words and 33 sentences per article, for a total of 70,975 words.

2 shows an example of an article pairing in the dataset. Throughout the rest of the paper,

we refer to this web dataset as Celebrity.

21

3.3 Model description

Four different types of classification models, including support vector machines (SVM)

(linear and nonlinear), softmax, multinomial Naive Bayes, and multilayer perceptron

classifier (MLP) are leveraged for this task. A combination of these models are also

tested in order to further improve the accuracy of prediction. Using scikit learn , these

models are implemented to learn from the training data using k-fold (k=10) cross-

validation, and then predict using the test sets. Bidirectional LSTMs have been

successfully used across different natural language processing tasks.

Thus, we adopt a bidirectional LSTM for fake news challenge stance detection task.

Our model is depicted in Each headline-article pair is processed as follows.

Let (xH 1 ; xH 2 ; :::; xH n) denote the sequence of word vectors corresponding to

words in the headline and (xA 1 ; xA 2 ; :::; xA m) denote the same for words in the

article. Each word is represented by a D dimensional word embedding that was pre

trained using GloVe. Using a bidirectional LSTM we first encode the article as: at =

biLSTMA(at−1; xA t ; xA m−t+1), where we initialize the LSTMs with a zero state.

The biLSTM consists of 2 LSTMs. In step t one takes in xA t and the other one takes

in xA m−t+1. We define the article encoding as A = [a1; :::; am] 2 R2d×m. Similar to ,

we then initialize a second bidirectional LSTM biLSTMH with the last state of the first

LSTM am and extract the headline encoding as ht = biLSTMH(ht−1; xH t ; xH m−t+1).

We define the headline encoding as H = [h1; :::; hn] 2 R2d×n. The concatenation of the

last states of the forward and backward pass of the article LSTM am 2 R2d and the

headline LSTM hn 2 R2d encode the local word embeddings of the headline and article

of our model. As the articles tend to be quite long, we condition the headlines on the

articles and not vice versa in order to avoid gradients vanishing before they reach the

first LSTM. In this regard, it also helps to feed in the outputs of the first LSTM directly

into the hidden layer. To extract global features, we follow the baseline method of [1]

and include the features described in Table 6 on page 11, which will be denoted as g 2

Rf, where f is the number of features. The global and the local features are then

concatenated to form a vector that is multiplied by W 2 R4×4d+f in the softmax layer

to produce the classification output c of our model as follows:

22

c = softmax (W[hn; am; g] + b) 2 R4 (1) R4 corresponds to the dimension of our labels

agree, disagree, discuss, and unrelated. Given c we optimize over a cross entropy loss

and train the model with the Adam optimization method [10].

Support vector machines are learning algorithms which convert features to points in

high dimensional space and divide points from different categories by a gap as wide as

possible.

Specifically, SVM solves the following optimization problem:

With kernels, SVM can also perform nonlinear classification. As a multinomial

generalization of the logistic regression, softmax is a classical method for classification

when there are more than two categories. It is intuitive to implement softmax in this

problem, when considering the relatedness and the stances of the news as outputs. With

a certain parameter θ,

the probability of the output classified to class naïve is listed as the following:

Multinomial naïve Bayes defines a generative process for the data set and assumes that

for features, p(x1|y=c), p(x2|y=c),, p(xn|y=c) are independent given a specific

category label y=c. Therefore, the joint probability of all features conditioned on y=c is

the product of each feature conditioned on y=c.

Then the maximum likelihood and predictions of new data could be calculated through

Bayes theorem. Due to these properties, naïve Bayes classifier is often used in text

classification problems in which the order of words does not matter.

Consisting of an input layer, an output layer, multiple hidden layers each with multiple

neurons, neural network is a very powerful tool for text stance classification as it relies

less on accuracy of feature extraction and can work on some crude features. As one of

the neural network models, multi-layer perceptron algorithm takes all the features as

the input, return classification as output and use backpropagation for training. In this

project, ReLU function g(z) = max(z, 0) is used as activation for each neuron of the

neural network.

23

3.4 Tools

To implement the system we need system requirements. The main objective of the

proposed system is to identify fake news of a given claim or news body. This is a

software which perform this operational task. As the software run in an operating

system so need to specify the requirements to run this software. There are three type of

requirements need to run this project hardware specification, necessary software tools

and the font type. The system requirements for the proposed model is listed below:

We chose to use papersapce to train and run our machine learning model primarially

because of how quick and easy it was to get a paperspace machine up and running for

machine learning. Therefore, speed was of the essence and the MLL-in-a-box preset

saved us a significant amount of time while trying to get our TensorFlow moel up and

running.

We used Paper space because it is:

1. Fast to setup

 ML in a box climates the nightmare that setting up CUDA can become.

 Graphical mode is very useful when first setting up a computer

2. Easy to use

 With Windows app terminals are dead simple to access

3. Plentiful V-RAM for a bargain

Our model required roughly 12 GB of V-RAM which made simply the quantity of V-

RAM required our biggest limiting factor when choosing a GPU.

 As of posting this article they’re way cheaper than the competition (AWS,

Azure) for more V-ram and faster cards.

24

 3.5 Interface

Figure 2: Project UI

Figure 3: Output in Terminal

Fake News Identification

25

3.6 Program pipeline

● Users input a claim like “Obama is not a US citizen”

● Our program will search Event Registry’s database for thousands of articles related

to the keywords.

● We run those articles through our home-grown stance detection machine learning

model which will determine each article’s relevance to the claim and it’s stance on it.

We determine if an article agrees/disagrees/is-neutral or is unrelated to the input claim.

● We then access our ever-evolving database of source reputability. If lots of reputable

sources all agree with your claim, then it’s probably true!

● Then we cite our sources so our users can click through and read more about that

topic!

3.7 Bag of Words

Some of our experiments were based on a completely different approach based on bag

of words (BoW). Here we describe the most successful model of this kind. A diagram

of this model can be seen in Appendix A (Figure 5 on page 11). For word representation,

we used a 50-dimensional version of the pre-trained GloVe vectors [3] used in our other

models. For each headline-body pair, stop words are removed from both the headline

and the body. The body is split up into sentences and the average word vector is

calculated for each sentence. A corresponding vector is calculated for the headline. We

then calculate the cosine similarity of the headline vector to each body sentence vector

and pick the 3 with the highest similarity. Those vectors as well as the headline vector

are then concatenated to create the input vector for our classifier. Optionally we

concatenated the global features to the input vector as well. The input vector is then fed

into a neural network with a single 100-unit ReLU hidden layer and a softmax output

layer. The BoW model performs surprisingly well given its simplicity and only

performs slightly worse than our full model, see Table 2 on the preceding page. A

confusion matrix can be seen on Figure 4 on page 10 in Appendix A. The model seems

to capture similar information as the global features because adding them only gives a

small boost to the performance unlike with the LSTM.

26

3.8 Parsing input and fetching articles

Given a user URL or claim, we used Microsoft’s Azure Cognitive and IBM’s Natural

Language Processing to parse the article or claim and perform keyword extraction. We

then used combinations of the keywords to collect up to a few thousand articles from

Event Registry’s database to pass on to the machine learning model. Here we aired on

the side of collecting more rather than fewer articles because the machine learning will

accurately determine relevance further in the pipeline.

After combing through numerous newspaper and natural language processing APIs, we

discovered that the best way to find related articles is by searching for keywords. The

challenge was implementing a natural language processing algorithm that extracted the

most relevant keywords that were searchable, and to extract just the right number of

keywords. Many algorithms were simply summarizers, and would return well over 50

keywords, which would be too many to search with. On top of that, many algorithms

were resource exhaustive and would sometimes take up to a minute to parse a given

text. In the end, we implemented both Microsoft’s Azure and IBM’s Watson to process,

parse, and extract keywords given the URL to a news article or a claim. We passed the

extracted keywords to Event Registry’s incredible database of almost 200 million

articles to find as many related articles as possible.

With more time, we would love to implement Event Registry’s data visualization

capabilities which include generating tag clouds and graphs showing top news

publishers given a topic.

3.9 Source Reputability Database

In order for our application to work, we needed to be able to compare new stances to

our ever-improving database of source reputability. We wrote a python script to keep

track of all encountered sources along with a reputation score of calculated weight. As

a start, we hard-coded reputations based off nationwide research studies, and then every

time we ran our algorithm, we added any new encountered sources to our database. In

order to do this, we calculated a reputation score for each new article by comparing its

stance towards the input claim with the stances of sources with known reputation and

averaging the result. In the future we hope to incorporate more accurate data-science

27

techniques to improve our database. As a smaller project, we also hope to figure out a

more streamlined approach than keeping track of the database with. csv’s by having a

copy of the database exist outside of a single run of the application.

After setting up the baseline model of [1], we first use a model similar to the model of

[5]. First, we encode the headline using a bidirectional LSTM. Then, we encode the

article with another bidirectional LSTM conditioned on the output of the headline

LSTM. To our surprise, processing the article first and conditioning the headline on the

article encoding worked better than vice versa for our dataset. Just by switching the

order in which the article and headline are processed, we were able to increase our

performance from a 57.8% score and 41.1% mean F1 score to a 65.3% score and 50.2%

mean F1 score. Further fine-tuning, such as optimizing the number of hidden units and

the dimension of word embeddings, balancing the dataset during training, and

truncating the articles as mentioned in the implementation details maxes out the

performance of our bidirectional LSTMs at 70.5% score and 51.4% mean F1 score. On

the other hand, our previous analysis of the baseline of [1] has shown that its features

are especially useful for discriminating related from unrelated articles, but not the other

classes, as can be seen in Table 3. To leverage the baseline’s classification accuracy of

related and unrelated articles, we include the features of [1] in our model by

concatenating them to the LSTM features before the softmax computation. As can be

seen in Table 2 our final conditioned bidirectional LSTM model with global features

outperforms all other baselines and models with an overall score of 87.4% and a mean

F1 score of 69.5%. Figure 2a shows that the concatenation of global features with the

bidirectional LSTM features effectively reduces the number of false positives for the

unrelated category compared to using the bidirectional LSTM only. At the same time,

the LSTM is now able to better focus on the discrimination of the agree, disagree and

discuss categories instead of having to deal with the related/unrelated discrimination.

Yet, most confusions happen in the agree and disagree categories, which is expected

given that these two categories have the lowest number of examples in the dataset, as

can be seen in Table 1. As a result, these two categories are biased towards being

classified as discuss and confusions between agree and disagree are frequent as well

28

Chapter 4

Result and Discussion

29

4 Result

The metric is a weighted accuracy score, with 25% weight on correctly classifying

“related” stances, which includes “agree”, “disagree” and “discuss”, and “unrelated”

stances, and 75% weight on correctly classifying three “related” stances.

4.1.1 Effect of Feature Extraction on Performance

Figure 4: Performance improvement after adding the following features: similarity,

bag-of-word (BOW), and sentiment features.

The performance improvement percentage from different features is shown in Figure

1. It is found that the “similarity” and “bow” features better describe the stances of the

headlines towards the bodies, than the word “sentiments” and “polarity features”. The

addition of both “similarity” and “bow” features improve the performance better than

adding a single type of features.

30

4.2 Discussion

4.2.1 Model Performance on Each Category

A summary of all models is shown in Table 1. Overall, all models have above 90%

accuracy on prediction of unrelated stance and below 5% accuracy on disagree stance.

Moreover, all models have around 80% accuracy rate on the discussed stance. This

discrepancy could be explained by a) the difference in the number of test instances, b)

feature extraction, and c) model parameters. For 25413 test instances, 18349 has stance

unrelated and 7064 related. Related instances contain 1903 agree, 697 disagree, and

4464 discussed. Data with disagree stance are significantly less than data with unrelated

stance. Lack of training data might contribute to the low accuracy rate of disagree

stance, and agree stance. Also, extracted features such as overlapped words or cosine

similarity focus more on relevance between each pair of headline and body rather than

positive and negative attitudes. Finally, model parameters, such as the numbers of

layers and nodes in the MLP model, are yet to be optimized to improve the accuracy of

classification. The accuracy rate for all models in test set is shown in Table 2. Across

different models, MLP Classifier has the overall best performance. Softmax and linear

SVM have better performance on unrelated stance compared with non-linear models,

such as SVM with RBF kernel or MLP classifier. Among related stances (agree,

disagree, and discussed), MLP works best compared with other models. Multinomial

naive Bayes has comparatively better performance on agree stance and disagree stance,

and MLP Classifier has the best performance on discussed stance.

31

Table 1: Test set labels output by multilayer perceptron (MLP), softmax(SF),

multinomial naive Bayes (MNB) and support vector machine (SVM)

A\P Agree Disagree Discuss Unrelated

Agree 147 (MLP)

116 (SF)

378

(MNB)

97 (SVM)

0

4

39

0

1528

1446

1246

1513

228

337

240

293

Disagree 34

27

62

12

0

0

11

0

444

381

436

420

219

289

188

265

Discuss 198

122

625

86

0

0

38

0

3761

3556

3168

3691

505

786

633

687

Unrelated 0

7

70

6

0

0

0

0

304

168

1096

202

18045

18174

17183

18141

32

Table 2: Accuracy rate of each stance for all models. Here, the percentage for each

category is the percentage accuracy for the test set. The total scores

Accuracy

Rate

Linear

SVM

Softmax Multinomial Naive

Bayes

MLP

Classifier

Unrelated 99% 99% 94% 98%

Related 82% 80% 85% 87%

Agree 5% 6% 20% 8%

Disagree 0% 0% 2% 0%

Discussed 83% 80% 71% 84%

Total

Score

75.89% 74.76% 72.48% 77.74%

4.2.2 Performance of model combination

Single models alone have below 20% accuracy on classification of “agree” stances

and “disagree” stances and different models show advantages and disadvantages on

classification of different stances. We proposed the reason behind the bad performance

of the model to be the disproportionate number of the “agree”, “disagree” news

instances versus the “unrelated” instances. Therefore, the algorithms tend to predict

more “test” newspaper headlines to be “unrelated” to its bodies. To handle this

problem, we decided to use a sub-category classification here. The idea is to use a

method to classify “related” from “unrelated” first, and use other methods to do further

classifications. Two types of model combinations are proposed to specify the

classification process in more details. The two-model combination splits the stance

detection task into two classification subtasks and each subtask is completed by a

classification model. The first subtask is to classify all headline-body pairs into

unrelated and related stances. Related stances include “agree”, “disagree”, and

“discuss” stances. For headline-body pairs with related stances, the second subtask

33

further classifies “agree”, “disagree”, and “discuss” stances. The three-model

combination splits the task into three subtasks, each completed by a classification

model. The first model classifies “related” and “unrelated” stances. For “related”

stances, the second model classifies whether a stance is neutral(“discuss” stance) or

not. For non-neural stances, the third model classifies whether a stance is “agree” or

“disagree”. Models in the combination could use different feature sets. For example,

in the 3-model combination, the BOW feature is helpful for the first two classification

subtasks. When the BOW feature is applied to the classification of “agree” and

“disagree” stances, overfitting is observed and damages the overall performance.

Overall, two-model combinations and three-model combinations achieved above 75%

score on the test set. In the three-model combination, when the third task is completed

by multinomial naive bayes, classification of “agree” and “disagree” stances will be

significantly improved and the same for the overall performance. The overall

performance for SVM+MLP+SVM combination has achieved the highest score of

78.46%

Figure 5: Comparison of test set score generated from different models GB = Gradient

Boosting Classifier. LR = Logistic Regression (when softmax is applied to binary

classification). MNB = Multinomial Naive Bayes. M1+M2(+M3) = 2(3)-model

combination.

.

.

34

Chapter 5

Conclusion and Future

Work

35

5. Conclusion

In this paper, we provide a comprehensive repository which contains information from

news content, social context, and spatiotemporal information. We propose a principled

strategy to collect relevant data from different sources. Compared with single model,

splitting the stance detection task into two or three subtasks and utilizing combination

of models improved the overall performance. In most cases, we obtained a range of

accuracy values between 80% and 82%. Among different features, combination of

cosine similarity and bow features significantly improved the performance.

5.1 Future Improvement

As future work, we would like to extend our approach. Prediction Improvement on

Distinguishing Agree vs. Disagree Categories.

The current project did not include domain knowledge related features, such as entity

relationships. Future studies could extract name entities from each pair of news headline

and news body and analyze their relationships through a knowledge base. News articles

contain a lot of named entities that can result in unknown words, a pointer method

similar to could help resolve unknown words and better link the headline to the article

body.

And lastly, we would like to extend in Bangla news articles.

36

References

[1] Mrowca, D., Wang, E., & Kosson, A. (2017). Stance detection for fake news

identification.

[2] Davis, Richard, and Chris Proctor. "Fake News, Real Consequences: Recruiting

Neural Networks for the Fight Against Fake News." [2] Fake News Detection

Challenge: FNC-1. <http://www.fakenewschallenge.org>

[3] Mohammad, Saif M., and Peter D. Turney.

"Emotions evoked by common words and phrases:

[4] Using Mechanical Turk to create an emotion lexicon." Proceedings of the NAACL

HLT 2010 workshop on computational approaches to analysis and generation of

emotion in text. Association for Computational Linguistics, 2010.

[5] Shu, K., Mahudeswaran, D., Wang, S., Lee, D., & Liu, H. (2018). Fakenewsnet: A

data repository with news content, social context and dynamic information for studying

fake news on social media. arXiv preprint arXiv:1809.01286.

[6] Rubin, V., Conroy, N., Chen, Y., & Cornwell, S. (2016, June). Fake news or truth?

using satirical cues to detect potentially misleading news. In Proceedings of the second

workshop on computational approaches to deception detection (pp. 7-17).

[7] Mone, S., Choudhary, D., & Singhania, A. FAKE NEWS IDENTIFICATION CS

229: MACHINE LEARNING: GROUP 621.

[8] Della Vedova, M. L., Tacchini, E., Moret, S., Ballarin, G., DiPierro, M., & de

Alfaro, L. (2018, May). Automatic online fake news detection combining content and

social signals. In 2018 22nd Conference of Open Innovations Association

(FRUCT) (pp. 272-279). IEEE.

[9] Pérez-Rosas, V., Kleinberg, B., Lefevre, A., & Mihalcea, R. (2017). Automatic

detection of fake news. arXiv preprint arXiv:1708.07104.

http://www.fakenewschallenge.org/
http://www.fakenewschallenge.org/
http://www.fakenewschallenge.org/
http://www.fakenewschallenge.org/
http://www.fakenewschallenge.org/
http://www.fakenewschallenge.org/
http://www.fakenewschallenge.org/
http://www.fakenewschallenge.org/
http://www.fakenewschallenge.org/

37

Appendix

 # import numpy as np
 import pandas as pd
 import random
 import tensorflow as tf
 import time
 # import local packages
 # import rep
 # import webscraper
 from ml import ourModel
 from ml import util

 print("Pipeline running...")

 ###
 ################## ML INIT CODE #################
 ###
 # Set file names
 file_train_instances = "ml/train_stances.csv"
 file_train_bodies = "ml/train_bodies.csv"
 file_test_instances = "ml/test_stances_unlabeled.csv"
 file_test_bodies = "ml/test_bodies.csv"

 file_predictions = 'ml/ML_predictions.csv'

 # Initialise hyperparameters
 r = random.Random()
 lim_unigram = 5000
 target_size = 4
 hidden_size = 100
 train_keep_prob = 0.6
 l2_alpha = 0.00001

38

 learn_rate = 0.01
 clip_ratio = 5
 batch_size_train = 500
 epochs = 90

 # Load data sets
 raw_train = util.FNCData(file_train_instances,

file_train_bodies)
 raw_test = util.FNCData(file_test_instances,

file_test_bodies)
 # n_train = len(raw_train.instances)

 # TODO OH DUDE JUST LET THIS THING DO IT'S SHIT IN THE

INITILIZATION!!! Use the test and train sets provided then

just use the vectors created!

 # Process data sets - THIS TAKES 17 SECONDS!
 train_set, train_stances, bow_vectorizer, tfreq_vectorizer,

tfidf_vectorizer = util.pipeline_train(raw_train, raw_test,

lim_unigram=lim_unigram)
 # feature_size = len(train_set[0])
 # fix feature_size at 10001
 feature_size = 10001

 # Define model

 # Create placeholders
 features_pl = tf.placeholder(tf.float32, [None,

feature_size], 'features')
 stances_pl = tf.placeholder(tf.int64, [None], 'stances')
 keep_prob_pl = tf.placeholder(tf.float32)

 # Infer batch size

39

 batch_size = tf.shape(features_pl)[0]

 # Define multi-layer perceptron
 hidden_layer =

tf.nn.dropout(tf.nn.relu(tf.contrib.layers.linear(features_pl

, hidden_size)), keep_prob=keep_prob_pl)
 logits_flat =

tf.nn.dropout(tf.contrib.layers.linear(hidden_layer,

target_size), keep_prob=keep_prob_pl)
 logits = tf.reshape(logits_flat, [batch_size, target_size])

 # Define L2 loss
 tf_vars = tf.trainable_variables()
 l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in tf_vars if

'bias' not in v.name]) * l2_alpha

 # Define overall loss
 loss =

tf.reduce_sum(tf.nn.sparse_softmax_cross_entropy_with_logits(

logits, stances_pl) + l2_loss)

 # Define prediction
 softmaxed_logits = tf.nn.softmax(logits)
 predict = tf.arg_max(softmaxed_logits, 1)
 sess = tf.Session()
 util.load_model(sess)
 # return sess, test_set, keep_prob_pl, predict,

features_pl
 ###
 ####### END ML INIT CODE #######
 ###

 url = 'http://abcnews.go.com/US/wireStory/hurricanes-teach-

us-ap-finds-fast-coastal-growth-49893843'
 # webscraper.web_scrape(url)
 # webscraper.web_scrape(url)
 # example call to python2 file:

40

 # result = call_python_version("2.7", "module(folder_name)",

"filename.py", "function_name", ["param1", "param2"])

 ######################
 ## MACHINE LEARNING ##
 ######################
 def runModel(sess, keep_prob_pl, predict, features_pl,

bow_vectorizer, tfreq_vectorizer, tfidf_vectorizer):
 start_time = time.time()
 print("Now running predictions...")

 # THIS is the info from Henry
 userClaims = "ml/claims2.csv"
 userBodies = "ml/bodies.csv"
 # parse that info
 raw_test = util.FNCData(userClaims, userBodies)
 # need more stuff for this
 test_set = util.pipeline_test(raw_test, bow_vectorizer,

tfreq_vectorizer, tfidf_vectorizer)
 # idk what this does really
 test_feed_dict = {features_pl: test_set, keep_prob_pl:

1.0}
 # run predictions
 test_pred = sess.run(predict, feed_dict=test_feed_dict)
 # timing
 print("generate test_set--- %s seconds ---" %

(time.time() - start_time))
 print("Preditions complete.")
 return test_pred

 stances = runModel(sess, keep_prob_pl, predict, features_pl,

bow_vectorizer, tfreq_vectorizer, tfidf_vectorizer)
 print(stances)

41

 ################ lots of returns from loadML()

################
 # sess, test_set, keep_prob_pl, predict, features_pl =

ourModel.loadML()
 # stances = ourModel.runModel(sess, test_set, keep_prob_pl,

predict, features_pl)

 # stances = [1,2,3,2,3,3,2,2,3,1,0,0,2,3]
 # bodyID = range(len(stances))
 # sourceNames = range(len(stances))
 # urls = range(len(stances))

 # ml_output = pd.DataFrame(
 # {'BodyID': bodyID,
 # 'Stances': stances,
 # 'SourceName': sourceNames,
 # 'URL': urls
 # })

 # print(ml_output)

 # print(ml_output.loc[0,'Stances'])
 # print(ml_output.loc[1,'Stances'])

 ########################
 ## REPUTATION SYSTEMS ##
 ########################
 # rep.loadDefaultReputations()
 # rep.mlToOut(ml_output)

 print("Pipeline complete")

42

